

IPM CONFERENCE 2024

Holistic IPM: Reducing pesticide use

BRUSSELS · MAY 14TH

Quantifying the potential of reducing pesticide use thanks to DSSs

Prof. Tito Caffi | Università Cattolica del Sacro Cuore

THIS PROJECT HAS RECEIVED FUNDING FROM THE **EUROPEAN UNION' HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME** UNDER GRANT AGREEMENT N. 817617 UNDER GRANT AGREEMENT N. 101000339

2030 Targets for sustainable food production

Rossi et al., 2012. Phytopathologia mediterranea, 51: 457-479

Decision–making process

protection interventions

Decision–making process – Decision Support System

A **model** represents a simplified simulation of <u>reality</u>

Models can:

- increase efficacy and speed of the decision-making process;
- help in understanding epidemic processes and elaborating protection strategies

Modelling must be based on a deep knowledge of reality

Pathosystem

Empirical models

Mechanistic models

	Easy to develop	Detailed knowledge on biological processes is needed	
PRO	Complete biological knowledge not needed	Outputs are accurate and robust	
	No expertise on the organism is required	Prediction is possible in a wide range of agricultural contexts	
		High flexibility	
	Wide and representative field data are needed for model development	Modellers may have deep expertise on the organism	
CONS	No prediction is possible outside the range of input data (extrapolation)	Development often requires research for filling knowledge gaps	
Ŏ	No information is provided on biological processes		

Decision Tools - validation

Validation consists in <u>comparison between DT output and observations in</u> <u>representative conditions</u>; it requires knowledge about the DT (biological background, data used, modelling approaches, algorithms, etc.) and validation procedures

Unfortunately, <u>procedures for validation are usually not available or</u> <u>not detailed</u>. As a consequence, local experts do not adequately use DTs so that DTs do not gain sufficient credentials

Once a DT has been validated for its ability to correctly represent the real system **the usefulness of its use in IPM programs should be verified**

Economic and environmental advantages should be also evaluated

Rossi et al., 2019 - Agronomy, 9(11), 710

Costs	Benefits
Purchase of the DSS	Less PPP costs
Time spent to learn the DSS use	Less distribution costs (fuel, manpower)
	Less time to collect information and take decision
	Learning from the DSS (indirect benefit)
	Less pollution (indirect benefit, community costs)
	Less residues in food (community costs)

Cost-benefit evaluation is difficult to be shown

The DSS was tested in 21 organic farms in Italy (which ranged from 1 to 180 hectares) and allowed, over two seasons, the same level of grape protection obtained with the usual farm practice, with an average saving in the **total amount of copper applied of 37%** (reduced doses and fewer applications).

This saving was equal to about EUR 195/ha/year for the growers.

The DSS is now used by more than 600 farmers across Italy on about 15.000 ha

Pertot et al. 2017. Crop Prot. 97:70–84. Rossi et al. 2014. Comput. Electron. Agric. 100:88–99.

The DSS was tested in 25 farms across Italy for durum wheat production: both **farmer income** (A) and **carbon footprint** (B) resulted significantly different from the standard IPM practice

The DSS is now used on more than 80.000 ha

Rossi et al., 2010. Decis. Support Syst. Adv. 1 Rossi et al., 2015.World Mycotoxin Journal, 8(5), 629-640.

Decision Tools – validated and available

Table 3 Decision tools (DTs) for IPM that have been validated and are being used in specific areas of Europe

Crop	N. of pests	N. of DTs	Pest/mycotoxin names
Almond	7	7	Alternaria alternata, Eurytoma amygdali, Monilinia fructicola, Myzus persicae, Taphrina deformans, Tetranychus urticae, Wilsonomyces carpophilus
Apples	5	9	Argyrotaenia pulchellana, Cydia pomonella, Erwinia amylovora, Pandemis cerasana, Venturia inaequalis
Asparagus	1	1	Stemphylium vesicarium
Barley	12	17	Blumeria graminis, Deoxynivalenol (DON), Drechslera teres, Fusarium avenaceum, F. culmorum, F. graminearum, F. langhsetiae, F. poae, F. sporotrichoides, Microdochium nivale, Puccinia hordei, Rhynchosporium secalis
Blackberries	1	1	Drosophila suzukii
Cherries	2	2	Drosophila suzukii, Monilinia fructicola
Cucurbits	3	4	Golovinomyces orontii, Podosphaera xanthii, Pseudoperonospora cubensis
Eldelberry	1	1	Drosophila suzukii
Flowers (cut)	1	1	Botrytis cinerea
Grapes	10	19	Aspergillus carbonarius, Botrytis cinerea, Drosophila suzukii, Erysiphe necator, Guignardia bidwellii, Lobesia botrana, Ochratoxin A, Planococcus ficus, Plasmopara viticola, Scaphoideus titanus
Kiwifruit	1	1	Pseudomonas syringae pv. actinidiae
Legumes	10	10	Ascochyta rabiei, A. pinodes, Alternaria alternata, Bruchus rufimanus, Colletotrichum lindemuthianum, C. lupini, Cydia nigrana, Helicoverpa (= Heliothis) armigera, Sitona sp., Uromyces phaseoli
Loquat	1	1	Fusicladium eriobotryae
Maize	16	19	Larvae and adults of Agriotes lineatus, A. obscurus, A. sordidus, A. sputator, Aspergillus flavus, Chaetocnema pulicaria, Diabrotica virgifera, Fusarium graminearum, F. langsethiae, F. verticillioides, Ostrinia nubilalis, Penicillium spp., Aflatoxins, Fumonisins, DON, T2/HT2
Oats	1	1	DON
Oilseed rape	5	5	Brassicogethes aeneus, Ceutorhynchus napi, C. pallidactylus, Psylliodes chrysocephalus, Sclerotinia sclerotiorum

Olives	2	6	Fusicladium oleaginum, Bactrocera oleae
Onions	1	2	Peronospora desctructor
Peaches	9	13	Adoxophyes orana, Anarsia lineatella, Cydia molesta, Monilinia fructicola, Monilinia spp., Sphaerotheca pannosa, Taphrina deformans, Wilsonomyces carpophilus, Xanthomonas arboricola
Pears	6	8	Argyrotaenia pulchellana, Cydia pomonella, Erwinia amylovora, Pandemis cerasana, Stemphylium vesicarium, Venturia pirina
Pistachio	1	1	Septoria spp.
Plums	2	2	Cydia funebrana, Drosophila suzukii
Potatoes	9	18	Larvae and adults of Agriotes lineatus, A. obscurus, A. sordidus, A. sputator, Alternaria alternata, A. solani, Leptinotarsa decemlineata, Phthorimaea operculella, Phytophthora infestans
Raspberries	1	1	Drosophila suzukii
Rice	5	5	Cochliobolus miyabeanus, Pyricularia oryzae, Rhizoctonia solani, Rice Tungro S and B viruses, Xanthomonas campestris pv. oryzae
Rye	3	3	Puccinia recondita, Blumeria graminis, Rhynchosporium secalis
Strawberry	1	2	Botrytis cinerea
Sugar beet	2	8	Erysiphe betae, Cercospora beticola
Говассо	1	1	Peronospora tabacina
Fomatoes	7	11	Alternaria solani, Helicoverpa (=Heliothis) armigera, Oidium lycopersici, Phthorimaea operculella, Phytopthora infestans, Pseudomonas syringae, Xanthomonas campestris pv. vesicatoria
Friticale	6	6	Puccinia triticina, P. striiformis, Blumeria graminis, Rhynchosporium secalis, Parastagonospora nodorum, Zymoseptoria tritici
Wheat	22	31	Blumeria graminis, Barley Yellow Dwarf Virus (BYDV), Fusarium avenaceum, F. culmorum, F. graminearum, F. langhsetiae, F. poae, F. sporotrichoides, Microdochium nivale, Parastagonospora nodorum, Puccinia recondita, P. striiformis, P. triticina, Pyrenophora tritici-repentis, Rhopalosiphun maidis, R. padi, Sitobion avenae, Zymoseptoria tritici, DON, Nivalenol (NIV), Trichothecene mycotoxins (T2-HT2), Zearalenone (ZEA)

155 217

Rossi et al., 2023 - Food Security 15, 1459–1474

Decision Tools – meta analysis

During IPMWORKS a meta-analysis was carried out on disease management based on Decision Tools for three crops (wheat, grapevine, potato): results analysed from 65 papers showed that the DT-based strategy has the same control on disease as the Standard IPM, but the TFI of PPP <u>used is significantly lower</u>

Furiosi et al., 2024 – under publication

IPMDECISION PLATFORM

24 models (only 3 mechanistic) available on 7 different crops

Great base for retrieving information on infection risks.

Prediction of infection periods is only a part of decisionmaking. Other questions to be answered:

is the plant susceptible to infection?

- is the plant already protected by a previous PPP spray?
- which PPP should I use, and at what dose?
- is the environment suitable for the fungicide application?

Conclusion

Farmers are more likely to adopt DT-based IPM practices if:

- (i) their outcomes, along multiple dimensions that are not limited to economics, <u>are clearly favourable;</u>
- (ii) <u>farmers perceive and understand</u> social pressures to adopt such practices;
- (iii) farmers <u>feel capable of</u>, and <u>are enabled to</u>, implement these practices on their own farms

IPM CONFERENCE 2024

Holistic IPM: Reducing pesticide use

BRUSSELS · MAY 14TH

THANK YOU!

Prof. Tito Caffi | UCSC (Italy) | tito.caffi@unicatt.it

THIS PROJECT HAS RECEIVED FUNDING FROM THE **EUROPEAN UNION' HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME** UNDER GRANT AGREEMENT N. 817617 UNDER GRANT AGREEMENT N. 101000339